• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
Codemotion Magazine

Codemotion Magazine

We code the future. Together

  • Magazine
  • Dev Hub
    • Community Manager
    • CTO
    • DevOps Engineer
    • Backend Developer
    • Frontend Developer
    • Web Developer
    • Mobile Developer
    • Game Developer
    • Machine Learning Developer
    • Blockchain Developer
    • Designer – CXO
    • Big Data Analyst
    • Security Manager
    • Cloud Manager
  • Articles
    • Stories
    • Events
  • Sign In
Home » Articles » Events » Want to Learn about Genetic Algorithms? Start Life Hacking
Events

Want to Learn about Genetic Algorithms? Start Life Hacking

In preparation for the upcoming Codemotion online conference: The Spanish edition, Mey Beisaron shares how she learnt how to use genetic algorithms.

Last update October 28, 2020 by Cate Lawrence

genetic algorithms AI
Table Of Contents
  • The motivation for the life hacking algorithm
  • What is a genetic algorithm? 
  • What tools did you use?  
  • How to begin learning about genetic algorithms?

It’s often hard to motivate ourselves to learn new tech – whether a new coding language or algorithm – when it’s not essential to our job. Tech not only moves fast, but it’s easy to get overwhelmed by the plethora of documentation, tutorials, and videos. But what if your motivation was to hack your own life? Mey Beisaron did just that, coding a genetic algorithm from scratch and using it to generate a weekly schedule and to create a smart diet planner. 

Mey is a Backend Developer at Appsflyer and also a mentor for helping junior devs land their first job, as well as support women to become conference speakers. I spoke to her about her life hacking algorithm aspiring speakers, aspiring women speakers, or also I’m also a mentor for junior developers to land their first job. I spoke to her prior to her presentation at Codemotion’s online conference: The Spanish edition. 

The motivation for the life hacking algorithm

According to Mey, using her own life was a great way to teach herself about genetic algorithms. She notes:

 “I figured out that the best way to focus on the algorithm is by actually taking a very simple problem, because if you take a very complicated problem, then you have two things that you need to focus on: you need to understand the solution to the problem, and you need to understand the problem itself. And the whole definition of the problem may take some time until you get to actually implement the solution and the algorithm. So by taking on simple problems, like arranging your timetable, or arranging your diet, that enabled me to focus on the algorithm.” 

Specifically, Mey focused on the problem of nutrition: “ You have a few things in your fridge, and they have nutritional values. And what I wanted was to know how much I should eat of each one of them per day in order to maintain my diet. And so this meant that I answered to the algorithm, the products that I have in the fridge. And then I also insert the constraints, which are like how many carbs and how much fat and how much protein I want to eat per day. And then I got results detailing the amounts that I should eat of each product per day. 

What is a genetic algorithm? 

AI (artificial intelligence) developer

A genetic algorithm is a heuristic search method used in artificial intelligence and computing. As we discussed in a previous article, genetic algorithms are used for finding optimized solutions to search for problems based on the theory of natural selection and evolutionary biology. Mey asserts: 

“What I love about genetic algorithms is that it’s easy to explain, but not that easy to implement. There are a few steps that need to be taken. And it means that you have a set of solutions that you take, and each time you have a function that checks if these sets of solutions are good enough. To determine if the solution is good enough, you establish a pre-determined grade. And then, if these solutions are not good enough, then you shuffle the solutions between themselves and you create new solutions out of the existing ones. 

 It’s like evolutionary computation in that it takes the principle of natural selection to create a new solution out of what already existed.  I love the idea of taking stuff from nature and implementing it. It’s not the first or only algorithm that does this, it was just the easiest one for me to start with.”

What tools did you use?  

Mey didn’t use any specific tools or libraries, “because I implemented everything from scratch. So it involved a lot of reading. And there’s a lot of material on that topic out there. So it was fairly easy to find information on how to do things.”

How to begin learning about genetic algorithms?

Mey asserts that this is a great project for everyone, especially beginners.

 “ It doesn’t matter your level of expertise. Even If you’ve never done anything with algorithms, it’s really easy to understand the concept. And once you understand a concept, you can start asking yourself questions as to how you would implement it. 

Just like if I’ll tell you that there is a PacMan game, you understand that there is the Pac Ma the eats the pellets, So then, if you know that, then you can start asking questions that will help you implement the algorithm. So you should start by reading about this algorithm, understanding the genetic algorithm, and try to understand the different steps of the algorithm, and the purpose of each step. From there it becomes fairly easy to go and start implementing, beginning with trial and error.”

Mey notes that genetic algorithms are also used in gaming, particularly with the evolution of game characters. “So using genetic algorithm in games, it means that you try to stretch the personal attributes and capabilities of a game character. Imagine a player in a game that starts to do the things that it’s supposed to do in the game. And you see how this player depending on whether it’s good or not can evolve into a whole different player until it gets to the point where it’s a very good fit. You didn’t even have to do anything, you just sit there and you watch how your player is getting better and better at doing whatever it is that you wanted to do in the game. I don’t know why it’s fun, but it’s really fun.”

Mey’s talk will include code examples and she’ll go through the different stages of the algorithm and understand how they affect the algorithm’s solutions. You’ll discover a new way to solve your everyday problems.

Tagged as:Artificial Intelligence genetic algorithms Machine Learning machine learning developer

DEVS FOR HEALTH: a Hackathon for Good
Previous Post
Building a bike-computer on the Web with WebComponents
Next Post

Primary Sidebar

Subscribe to our newsletter

I consent to the processing of personal data in order to receive information on upcoming events, commercial offers or job offers from Codemotion.
THANK YOU!

Whitepaper & Checklist: How to Organise an Online Tech Conference

To help community managers and companies like ours overcome the Covid-19 emergency we have decided to share our experience organizing our first large virtual conference. Learn how to organise your first online event thanks to our success story – and mistakes!

DOWNLOAD

Latest

Understanding‌ ‌a‌ ‌Lean‌ ‌Approach‌ ‌to‌ ‌Software ‌Development‌ ‌to‌ ‌Maximize‌ ‌Output‌ ‌Value

Understanding‌ ‌a‌ ‌Lean‌ ‌Approach‌ ‌to‌ ‌Software ‌Development‌ ‌to‌ ‌Maximize‌ ‌Output‌ ‌Value‌

DevOps Engineer

5 Tips to Foster Productive Collaboration With Data Analysts

5 Tips to Foster Productive Collaboration With Data Analysts

Big Data Analyst

How to Implement AI Predictive Maintenance on Edge Devices

How to Implement AI Predictive Maintenance on Edge Devices (Case Study)

Machine Learning Developer

6 Ways to Implement Metaprogramming in JavaScript with Proxies

6 Ways to Implement Metaprogramming in JavaScript with Proxies

Web Developer

How to Optimise Your IoT Device's Power Consumption

How to Optimise Your IoT Device’s Power Consumption

Machine Learning Developer

Related articles

  • Recommended Books About Leadership for CTOs and Tech Leads
  • Genetic Algorithms: A Developer’s Perspective
  • What Are the Main Areas of Development for a Data Analyst’s Career?
  • Developers Can Turn Their Gaming Passion Into A Profession
  • How AI Can Help Solve the Challenges of Economic and Financial Inequality
  • ML at the Edge: a Practical Example
  • Google AI Hub: what, why, how
  • Conversational AI Is the New UX
  • The cutting edge of real-time AI

Subscribe to our newsletter

I consent to the processing of personal data in order to receive information on upcoming events, commercial offers or job offers from Codemotion.
THANK YOU!

Footer

  • Learning
  • Magazine
  • Community
  • Events
  • Kids
  • How to use our platform
  • About Codemotion Magazine
  • Contact us
  • Become a contributor
  • How to become a CTO
  • How to run a meetup
  • Tools for virtual conferences

Follow us

  • Facebook
  • Twitter
  • LinkedIn
  • Instagram
  • YouTube
  • RSS

DOWNLOAD APP

© Copyright Codemotion srl Via Marsala, 29/H, 00185 Roma P.IVA 12392791005 | Privacy policy | Terms and conditions

  • Learning
  • Magazine
  • Community
  • Events
  • Kids
  • How to use our platform
  • About Codemotion Magazine
  • Contact us
  • Become a contributor
  • How to become a CTO
  • How to run a meetup
  • Tools for virtual conferences

Follow us

  • Facebook
  • Twitter
  • LinkedIn
  • Instagram
  • YouTube
  • RSS

DOWNLOAD APP

CONFERENCE CHECK-IN